Glossostyles perspicua gen. et sp. nov. and other fungivorous Cecidomyiidae (Diptera) new to the Czech and Slovak Republics

Tomáš SIKORA1,*, Mathias JASCHHOF2 & Jan ŠEVČÍK3

1,3 Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00 Ostrava, Czech Republic.
2 Station Linné, Ölands Skogsby 161, SE-38693 Färjestaden, Sweden.
3 Silesian Museum, Nádražní okruh 31, CZ-746 01 Opava, Czech Republic.

*Corresponding author: sikothomas@gmail.com
2E-mail: mjaschhof@yahoo.de
3E-mail: sevcikjan@hotmail.com

Keywords. Palaearctic region, central Europe, new genus, new species, new faunistic records.
Introduction

Gall midges, Cecidomyiidae, are a large family of small-sized, mostly short-lived dipterans that belong to the infraorder Bibionomorpha (Wiegmann et al. 2011; Ševčík et al. 2014) and, most probably, to the superfamily Sciaroidea (Ševčík et al. 2016). The family is best known for its herbivorous species (subfamily Cecidomyiinae), which account for about ⅘ of the described biodiversity, while the five basal subfamilies (Catotrichinae, Lestremiinae, Micromyinae, Winnertziinae, Porricondylinae) contain solely fungivores, as far as the biology is known (Gagné & Jaschhof 2014). Taxonomic research on the fungivorous subfamilies has intensified in recent years, leading to a reclassification of the entire family and improving the tools for the identification of species, especially in Europe (Jaschhof 1998; Jaschhof & Jaschhof 2009, 2013). In the Czech and Slovak Republics (former Czechoslovakia) the study of gall midges is firmly established through the dedicated work of Marcela Skuhrová and Václav Skuhravý (see Bílý 2015), but was previously focused largely on Cecidomyiinae (e.g., Skuhrová 1991, 1994). This circumstance is not unusual and corresponds to the common practice of splitting responsibilities between workers on herbivorous gall midges, on the one hand, and fungivorous gall midges, on the other hand.

A research group established at the University of Ostrava to study mainly Bibionomorpha systematics, biodiversity and biology has recently expanded its research interest onto Cecidomyiidae, including the fungivorous subfamilies (Mantič et al. 2015). Another outcome from the faunistic-taxonomic surveys conducted by that group, which includes two of the present authors, is presented here, this time dedicated wholly to fungivorous gall midges. Considering that former efforts to inventory Czech and Slovak Diptera largely neglected these inconspicuous midges, it does not come as a surprise that the present study unveiled a number of new species records for either or both of the two countries. Other taxa were identified to be even new to science, including Glossostyles perspicua gen. et sp. nov., a new member of the tribe Porricondylini described in this paper.

Material and methods

Specimens for this study, mostly male adults, were collected in 1999–2015 by sweepnet (SW) and Malaise traps (MT) in a number of different localities in the Czech Republic (CZ) and Slovakia (SK). The range of habitats covered by these collecting efforts included natural woodland, peat-bogs, meadows, steppes and heathlands, with many of the collecting sites located in areas benefitting from some kind of conservation status, a fact accounting for the generally high habitat quality (Figs 1–2). Most of the specimens studied here were collected in the frame of several large-scale inventory projects organized by the Czech dipterists Miroslav Barták, Štěpán Kubík, Jindřich Roháček, and Jan Ševčík. For descriptions of the localities and collecting methods used in those projects, see Barták & Kubík (2005), Kubík (2001), Roháček & Ševčík (2009) and Ševčík & Kurina (2011).

No attempt has been made at this stage to verify identifications by studying the respective voucher specimens of the Czech and Slovak species referred to in the literature. A series of both males and females of the newly described species were collected during an insect inventory in Tyresta National Park, Sweden, and received on loan from the Naturhistoriska Riksmuseet in Stockholm (NHRS). Specimens studied here were mounted on microscope slides according to the method described by Jaschhof & Jaschhof (2009), with Hoyer’s medium used instead of Canada balsam in a part of the material. Types of the new species are deposited in the National Museum in Prague (NMPC), other specimens in the
Fig. 1. Sampling localities. A. Rejvíz peat-bog (Czech Republic) with a Malaise trap used in 2004. A well preserved postglacial peat-bog with *Pinus rotundata* growth. B. Rejvíz peat-bog with the Malaise trap used in 2005. Photos by J. Ševčík.
Fig. 2. Sampling localities. A. Velká Kotlina Glacial Cirque (Czech Republic) with a Malaise trap used in 2006. Frequent avalanches are the main cause of the unique subalpine biodiversity of this locality (e.g., more than 350 species of vascular plants have been recorded from there) B. Hrončeký grúň Reserve in Poľana Mts (Slovak Republic) with a Malaise trap used in 2005. This is a virgin forest mainly composed of fir and beech intermixed with ash, spruce and sycamore maple and with an enormous and unique diversity of flies (see Roháček & Ševčík 2009). Photos by J. Ševčík
personal collection of Tomáš Sikora (TSPC), which will ultimately be deposited in NMPC, in the
NHRS, and in the Senckenberg Deutsches Entomologisches Institut (SDEI), Müncheberg, Germany.
Morphological terms used here are in accordance with those applied to fungivorous Cecidomyiidae by
Jaschhof & Jaschhof (2009, 2013), and, with respect to wing veins, Jaschhof (2016). The arrangement
of subfamilies follows the classification outlined by Gagné & Jaschhof (2014); genera and species are
listed alphabetically.

Other abbreviations used in the present paper are as follows:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>Biosphere Reserve</td>
</tr>
<tr>
<td>NM</td>
<td>Nature Monument</td>
</tr>
<tr>
<td>NR</td>
<td>Nature Reserve</td>
</tr>
<tr>
<td>NNR</td>
<td>National Nature Reserve</td>
</tr>
<tr>
<td>NP</td>
<td>National Park</td>
</tr>
<tr>
<td>tg</td>
<td>tergite</td>
</tr>
</tbody>
</table>

Results

Class Insecta Linnaeus, 1758
Order Diptera Linnaeus, 1804
Infraorder Bibionomorpha Hennig, 1954
Family Cecidomyiidae Newman, 1834

Genus *Glossostyles* Jaschhof & Sikora gen. nov.

Type species

Glossostyles perspicua gen. et sp. nov., described below.

Diagnosis

Adult morphology shows *Glossostyles* gen. nov. to be a typical member of the tribe Porricondylini,
where it belongs to the large group of genera with 14 male flagellomeres and without basitarsal spines
(group Aa in Jaschhof & Jaschhof 2013). The unadorned but massive construction of the male genitalia
(Fig. 3D) makes *Glossostyles* gen. nov. distinctive, with the particulars as follows. The gonocoxae are
fully merged ventromedially and lack processes at the posterior edge; the gonostyli are disproportionally
large and have no apical structure other than a sparse row of inconspicuous spines; the parameres are
fused to form a tegmen, which encloses the ejaculatory apodeme dorsally as a weakly sclerotized semi-
cylinder whose shape is elongate-trapezoid in ventral view. Similarly, large gonostyli and gonocoxae
are found in other genera of Porricondylini, such as *Pseudepidosis* Mamaev, 1966 and *Claspettomyia*
Grover, 1964, but there they are modified, the gonostyli with apical teeth and/or subapical swellings, and
the gonocoxae with a ventral emargination and various processes. Unlike in *Glossostyles* gen. nov., the
parameres in *Pseudepidosis* and *Claspettomyia* are strongly sclerotized, and are either separated from
each other or complexly built. *Claspettomyia* is peculiar among these three genera for having 13 instead
of 14 male flagellomeres.

Etymology

The name *Glossostyles* is composed of the Greek words ‘glossa’, for tongue, and ‘stylos’, for stylus,
with reference to the distinctive tongue-shape of the gonostyli. Gender is feminine.
Notes on relationship

Obvious similarities in the structure of the gonostyli and gonocoxae suggest that *Glossostyles* gen. nov. is most closely related to *Claspettomyia*. In both genera the gonostyli are enormously large, constricted beyond the basal apophyses, which are well developed, and clearly broadened further distally, while the massive gonocoxae are much broader than long.

Glossostyles perspicua Jaschhof & Sikora gen. et sp. nov. urn:lsid:zoobank.org:act:5C7275CB-7B7F-4FAD-808F-3E346206447A Fig. 3A–F

Diagnosis

This species differs from the other Porricondylini in the characters referred to in the generic diagnosis of *Glossostyles* gen. nov. In particular, the tongue-shaped gonostyli, which are unusually large and directed ventromedially, make *G. perspicua* gen. et sp. nov. unmistakable.

Etymology

The species epithet 'perspicua' is a Latin adjective, meaning ‘unmistakable’.

Type material

Holotype

Paratype

Other material studied

Description

Male

Body. Size up to 2.2 mm.

Head. Postfrons asetose. Eye bridge 3–4 ommatidia long dorsally. Antenna slightly longer than body. Scape and pedicel lighter than flagellum. Circumfila on flagellomeres 1–14, evenly ring-shaped. Neck of fourth flagellomere 1.2 times as long as node (Fig. 3E). Palpus 1.3 times as long as head height, 4 subcylindrical segments, fourth segment longest of all.

Thorax. Anepisternum and anepimeron setose. Wing (Fig. 3A) longer than body. Length/width 2.8. Rs strongly oblique, almost in line with R₅. Btv sinuous. A remnant M₁₂ present at wing margin. M₄ weak, approaches CuA. Legs densely covered with narrow scales, conspicuously light setae on third to fifth tarsomeres (therefore tarsi white-tipped). Claws moderately curved, 1 large and 2–4 smaller teeth basally. Empodia broad, as long as claws.

Abdomen. Sclerites entire, setae long, aligned on posterior margin, dispersed elsewhere. Pleural membrane sparsely setose.
Fig. 3. Morphology of *Glossostyles perspicua* Jaschhof & Sikora gen. et sp. nov. A. Wing, setae omitted (♀ from Tyresta). B. Gonostylus, lateral (specimen from Tyresta). C. Female genitalia, lateral view (specimen from Tyresta). D. Male genitalia, ventral (holotype). E. Male fourth flagellomere, lateral view (holotype). F. Female fourth flagellomere, lateral (specimen from Tyresta). Scale bars: A = 1 mm; B–F = 0.05 mm.
Genitalia (Fig. 3D). Ninth tergite subtrapezoid. Gonocoxae broad, sparsely setose ventrally, with membranous, glabrous lobe medially on posterior edge; apodemes thick, long. Gonostylus massive, but appears surprisingly slender in strict lateral view (Fig. 3B), slightly curved, longer than gonocoxa, broadest at mid-length, constricted subbasally, on apex a few thin spines intermingled with long microtrichia, setae of various lengths elsewhere. Tegmen subtrapezoid in ventral view, with narrow collar apically, small apodemes beyond mid-length. Ejaculatory apodeme longer than gonocoxites, moderately sclerotized.

Female

Body. Size up to 2.8 mm.

Head. Antenna with 11 flagellomeres. Flagellomeres with elongate-subcylindrical nodes, distinct necks, circumfila as in Fig. 3F. Neck of fourth flagellomere more than half as long as node.

Genitalia (Fig. 3C). As typical for Porricondylini, including unusually large ninth tergite, 2-segmented dorsal lamella. Distiscercus slightly smaller than basicercus.

Note on identification

The specimens of *G. perspicua* gen. et sp. nov. from Tyresta were initially identified as an unnamed species of Porricondylini by Voldemars Spungis, University of Latvia, who worked, but never published, on the Porricondylinae from the Tyresta insect inventory in the early 2000s. Due to the rather poor state of preservation, those specimens remained undescribed in Jaschhof & Jaschhof’s (2013) revision of Swedish Porricondylinae.

New faunistic records

Anarettella iola Pritchard, 1951

Material

Distribution

Widely distributed throughout the Holarctic realm (Gagné & Jaschhof 2014). New to CZ.

Aprionus cornutus Berest, 1986

Material

Czech Republic: 3 ♂♂, Bohemia, Šumava Mts, Rokytská slatě, 24 Jul.–28 Aug. 2000, MT, M. Barták and Š. Kubík leg. (TSPC); 1 ♂, Bohemia, Šumava Mts, Nová Hůrka, 13 May–24 Jun. 2000, MT, M. Barták and Š. Kubík leg. (TSPC).
Distribution
Recorded in several European countries, from Norway to Ukraine (Gagné & Jaschhof 2014). New to CZ.

Aprionus dalarrensis Mamaev, 1998

Material

Distribution
Until now recorded only from northern Europe (Gagné & Jaschhof 2014). New to CZ.

Aprionus denticulus Berest, 1986

Material

Distribution
European in distribution (Gagné & Jaschhof 2014). New to CZ.

Aprionus dentifer Mamaev, 1965

Material

Distribution
Widely distributed in Europe (Gagné & Jaschhof 2014). New to CZ.

Aprionus flavidus (Winnertz, 1870)

Material
CZECH REPUBLIC: 1 ♂, Moravia and Silesia, Šilheřovice, Černý les II. NR, 4 Sep. 2015, SW, T. Sikora and J. Ševčík leg. (TSPC).

Distribution
Widely distributed and very common in Europe (Gagné & Jaschhof 2014). New to CZ.

Aprionus halteratus (Zetterstedt, 1852)

Material

Distribution
Common and widely distributed in Europe (Gagné & Jaschhof 2014). New to SK.
Aprionus inquisitor Mamaev, 1963

Material

Distribution
Widely distributed in Palaearctic region (Gagné & Jaschhof 2014). New to CZ.

Aprionus lindgrenae Jaschhof, 2015

Material

Distribution
Recently described from Sweden and Germany (Jaschhof & Jaschhof 2015), probably more widely distributed in Europe. New to SK.

Aprionus oligodactylus Jaschhof, 2009

Material

Distribution
Recently described from northern Europe (Jaschhof & Jaschhof 2009). New to CZ.

Aprionus pigmentalis Mamaev, 1998

Material

Distribution
Palaearctic in distribution (Gagné & Jaschhof 2014). New to CZ.

Aprionus spiniger (Kieffer, 1894)

Material

Distribution
Common and widely distributed in the Holarctic realm (Gagné & Jaschhof 2014), including CZ and SK (Skuhravá 2004, 2009). An additional record from north-east Slovakia.
Bryomyia Kieffer, 1895

Bryomyia apsectra Edwards, 1938

Material

Distribution
A widespread Palaearctic species (Gagné & Jaschhof 2014). New to CZ.

Bryomyia bergrothi Kieffer, 1895

Material

SLOVAK REPUBLIC: 1 ♂, Muránská planina NP, Poľudnica NNR, 30 Sep. 2015, MT, J. Roháček and J. Ševčík leg. (TSPC).

Distribution
Very common and widespread in the Palaearctic region (Gagné & Jaschhof 2014). New to CZ and SK.

Bryomyia gibbosa (Felt, 1907)

Material

Distribution
Holarctic in distribution (Gagné & Jaschhof 2014). New to CZ and SK.

Bryomyia helmuti Jaschhof, 1998

Material

Distribution
Previously known only from the type locality in Germany (Gagné & Jaschhof 2014). New to SK.
Campylomyza Meigen, 1818

Campylomyza dilatata Felt, 1907

Material

Distribution
Widespread in Holarctic realm (Gagné & Jaschhof 2014). New to CZ.

Campylomyza paenebicolor Jaschhof, 2009

Material
CZECH REPUBLIC: 1 ♂, Moravia and Silesia, Podyji NP, Havraníky, 27 Sep.–14 Nov. 2001, MT, M. Barták and Š. Kubík leg. (TSPC).

Distribution
Widely distributed in Europe (Gagné & Jaschhof 2014). New to CZ.

Catocha incisa Jaschhof, 2009

Material

Distribution
Probably widely distributed in Europe (Jaschhof & Jaschhof 2009). New to CZ.

Heterogenella Mamaev, 1963

Heterogenella hybrida Mamaev, 1963

Material

Distribution
Palaearctic in distribution (Gagné & Jaschhof 2014). New to CZ.

Micromya Rondani, 1840

Micromya lucorum Rondani, 1840

Material
Distribution
The only member of the genus *Micromya* Rondani, 1840 in Europe (Gagné & Jaschhof 2014). An additional record for CZ (see Skuhravá 1994, 2009).

Monardia Kieffer, 1895

Monardia (Xylopriona) atra (Meigen, 1804)

Material
CZECH REPUBLIC: 1 ♂, Moravia and Silesia, Podyji NP, Havraníky, 27 Sep.–14 Nov. 2001, MT, M. Barták and Š. Kubík leg. (TSPC); 2 ♂♂, Moravia and Silesia, Podyji NP, Terasy, 3 May–2 Jun. 2003, MT, M. Barták and Š. Kubík leg. (TSPC); 1 ♂, Moravia and Silesia, Podyji NP, Braňava-letohrádek, 13 May–1 Jun. 2001, MT, M. Barták and Š. Kubík (TSPC).

SLOVAK REPUBLIC: 1 ♂, Muránská planina NP, Muránský hrad, 30 Oct. 2015, SW, J. Roháček leg. (TSPC); 4 ♂♂, Muránská planina NP, Mokrá Poľana NR, 1 Oct. 2015, SW, J. Roháček leg. (TSPC); 2 ♂♂, Muránská planina NP, Poľudnica NNR, 30 Sep. 2015, MT, J. Roháček and J. Ševčík leg. (TSPC).

Distribution

Monardia (Monardia) obsoleta Edwards, 1938

Material
CZECH REPUBLIC: 2 ♂♂, Moravia and Silesia, Šilheřovice, Černý les II. NR, adults emerged 15 Nov. 2015, reared from larvae found in mould on *Royoporus badius*, J. Ševčík and T. Sikora leg. (TSPC).

Distribution
Widely distributed in Europe (Gagné & Jaschhof 2014). Reported as new to CZ by Ševčík (2010), who found larvae living in mould on the polypore fungus *Royoporus badius*. Another rearing record from CZ is presented here.

Monardia (Xylopriona) toxicodendri (Felt, 1907)

Material

Distribution

Monardia (Xylopriona) unguifera Berest & Mamaev, 1997

Material
Distribution
A rarely collected species, previously known from a few specimens collected in Germany, Ukraine and Finland (Gagné & Jaschhof 2014). New to CZ.

Neurolyga Rondani, 1840

Neurolyga acuminata Jaschhof, 2009

Material

Distribution
Palaeartic in distribution (Gagné & Jaschhof 2014). New to CZ.

Neurolyga excavata (Yükawa, 1967)

Material

Distribution
Widely distributed in the Palaeartic region (Gagné & Jaschhof 2014). New to CZ.

Neurolyga interrupta Jaschhof, 2009

Material

Distribution
Previously known from northern Europe (Gagné & Jaschhof 2014). New to CZ.

Peromyia Kieffer, 1894

Peromyia bidentata Berest, 1988

Material

Distribution
A rarely collected Palaeartic species (Gagné & Jaschhof 2014). New to CZ.
Peromyia fungicola (Kieffer, 1901)

Material

Distribution

Holarctic in distribution (Gagné & Jaschhof 2014). Previously reported from CZ by Ševčík (2010). This is an additional record for CZ.

Peromyia ramosa (Edwards, 1938)

Material

Distribution

Widely distributed in the Palaeartic region (Gagné & Jaschhof 2014). New to CZ.

Polyardis Pritchard, 1947

Polyardis adela Pritchard, 1947

Material

Distribution

Holarctic in distribution (Gagné & Jaschhof 2014). New to SK.

Skuhraviana Mamaev, 1963

Skuhraviana triangulifera Mamaev, 1963

Material

CZECH REPUBLIC: 2 ♂♂, Moravia and Silesia, Šilheřovice, Černý les II. NR, 4 Sep. 2015, SW, J. Ševčík and T. Sikora leg. (TSPC).

Distribution

Holarctic in distribution (Gagné & Jaschhof 2014). New to CZ.

Winnertiinae Panelius, 1965

Diallactia Gagné, 2004

Diallactia crocea (Kieffer, 1894)

Material

Ekmanomyia Jaschhof, 2013

Ekmanomyia svecica Jaschhof, 2013

Material

Distribution
Recently described from Sweden (Jaschhof & Jaschhof 2013). New to CZ.

Winnertzia Rondani, 1860

Winnertzia globifera Mamaev, 1963

Material

Distribution
This species was recently recorded from CZ by Mantič et al. (2015). New to SK.

Winnertzia parvispina Jaschhof, 2013

Material

Distribution
Previously known only from Sweden (Gagné & Jaschhof 2014). New to SK.

Winnertzia xylostei Mamaev, 1963

Material

Distribution
A common Palaearctic species (Gagné & Jaschhof 2014). New to CZ and SK.

Porricondylinae Kieffer, 1913
Asynapta Loew, 1850

Asynapta inflata Spungis, 1988

Material
CZECH REPUBLIC: 1 ♂, Moravia and Silesia, Podyji NP, Braïtava-lethorâdek, 13 May–1 Jun. 2001, MT, M. Barták and Š. Kubík leg. (TSPC).

Distribution
This species was hitherto known only from Sweden, Latvia and Ukraine (Gagné & Jaschhof 2014). New to CZ.

Asynapta strobi (Kieffer, 1920)

Material
CZECH REPUBLIC: 1 ♂, Moravia and Silesia, Hrubý Jeseník Mts, 1182 m, Velká Kotlina glacial cirque, 4 Sep.–24 Nov. 2006, MT, J. Roháček and J. Ševčík leg. (TSPC).

Distribution
Widely distributed in the Palaearctic region (Gagné & Jaschhof 2014). New to SK.

Camptomyia Kieffer, 1894

Camptomyia abnormis Mamaev, 1961

Material

Distribution
Widely distributed in Europe (Gagné & Jaschhof 2014). New to CZ.

Camptomyia corticalis Loew, 1851

Material
SLOVAK REPUBLIC: 1 ♂, Muránská planina NP, Poľudnica NNR, 8 Jul. 2015, MT, J. Roháček and J. Ševčík leg. (TSPC).

Distribution
Previously recorded from SK by Skuhrová & Košel (1995) as Camptomyia innotata Kieffer, 1894; another record for SK is presented here.
Camptomyia flavocinerea Panelius, 1965

Material

Distribution
This species has recently been reported from both the Czech Republic and Slovakia by Mantič et al. (2015). Additional records for CZ.

Camptomyia gigantea Spungis, 1989

Material

Distribution
Until now this species has been known only from Sweden and Latvia (Gagné & Jaschhof 2014). New to central Europe including SK.

Camptomyia multinoda (Felt, 1908)

Material

Distribution
Holarctic in distribution (Gagné & Jaschhof 2014). New to SK.

Camptomyia spinifera Mamaev, 1961

Material

Distribution
Reported as new to CZ by Skuhrová (2004). New to SK.

Camptomyia ulmicola Mamaev, 1961

Material
Distribution
Previously known mostly from northern Europe (Gagné & Jaschhof 2014). New to CZ.

Cassidoides Mamaev, 1960

Cassidoides fulviventris (Mamaev, 1964)

Material

Distribution
Widely distributed in the Palaearctic region (Gagné & Jaschhof 2014). New to SK.

Cassidoides fulvus (Kieffer, 1896)

Material

Distribution
Holarctic in distribution (Gagné & Jaschhof 2014). New to SK.

Claspettomyia Grover, 1964

Claspettomyia hamata (Felt, 1907)

Material

Distribution
Holarctic in distribution (Gagné & Jaschhof 2014). New to CZ and SK.

Coccopsis Harris, 2004

Coccopsis marginata (Meijere, 1901)

Material

Distribution
Coccopsis paneliusi (Yukawa, 1971)

Material

Distribution

Palaeartic in distribution (Gagné & Jaschhof 2014). New to CZ and SK.

Dendrepidosis Mamaev, 1990

Dendrepidosis longipennis (Spungis, 1981)

Material

Distribution

A rarely collected European species (Gagné & Jaschhof 2014). New to SK.

Dicerura Kieffer, 1898

Dicerura dispersa Jaschhof, 2013

Material

Distribution

This is the first record of this species outside the type locality in Sweden (Gagné & Jaschhof 2014). New to SK.

Divellepidosis Fedotova & Sidorenko, 2007

Divellepidosis hypoxantha (Panelius, 1965)

Material

Distribution

Widely distributed in Europe (Gagné & Jaschhof 2014). New to CZ.
Divellepidosis lutescens (Spungis, 1981)

Material
CZECH REPUBLIC: 1 ♂, Moravia and Silesia, Šilheřovice, Černý les II. NR, 4 Sep. 2015, SW, J. Ševčík and T. Síkora leg. (TSPC).

Distribution
Previously known from several European countries (Gagné & Jaschhof 2014). New to central Europe including CZ and SK.

Divellepidosis pallescens (Panelius, 1965)

Material

Distribution
Previous records from northern Europe (Gagné & Jaschhof 2014). New to CZ and SK.

Divellepidosis vulgata Jaschhof, 2013

Material

Distribution
Recently described from Sweden (Jaschhof & Jaschhof 2013). New to CZ.

Holoneurus Kieffer, 1895

Holoneurus ciliatus Kieffer, 1896

Material

Distribution
Previously known from France and Sweden (Gagné & Jaschhof 2014). New to central Europe including SK.
Monepidosis Mamaev, 1966

Monepidosis pectinatoides Jaschhof, 2013

Material

Distribution

Only recently described from Sweden, but probably intermixed with *M. pectinata* Mamaev, 1966 by previous authors and thus more widespread (Jaschhof & Jaschhof 2013). The first record of a species of *Monepidosis* in CZ.

Neocolpodia Mamaev, 1964

Neocolpodia gukasiani (Mamaev, 1990)

Material

Distribution

Previously known from Siberian Russia and Sweden (Gagné & Jaschhof 2014). New to central Europe including CZ.

Paneliusia Jaschhof, 2013

Paneliusia albimanoides Jaschhof, 2013

Material

Distribution

A widespread Palaearctic species (Jaschhof & Jaschhof 2013). Two males from CZ were reared from reed canary grass, *Phalaris arundinacea* (see above). New to CZ and SK.

Paneliusia aurantiaca (Panelius, 1965)

Material

Distribution
Widely distributed in Europe (Gagné & Jaschhof 2014). New to SK.

Parepidosis Kieffer, 1913

Parepidosis arcuata Mamaev, 1964

Material

Distribution
Widely distributed in Europe, also occurring in Uzbekistan (Gagné & Jaschhof 2014). New to CZ and SK.

Parepidosis planistylata Jaschhof, 2013

Material

Distribution
Recently described from Sweden (Jaschhof & Jaschhof 2013). New to CZ.

Parepidosis venustior (Kieffer, 1901)

Material

Distribution
Widely distributed in Europe (Gagné & Jaschhof 2014). New to SK.

Porricondyla Rondani, 1840

Porricondyla colpodioides Mamaev, 1963

Material

Distribution
Palaearctic in distribution (Gagné & Jaschhof 2014). New to CZ.
Porricondyla errabunda Mamaev, 2001

Material

Distribution
Previously found to occur in western Siberia and Sweden (Gagné & Jaschhof 2014). New to central Europe including CZ.

Porricondyla microgona Jaschhof, 2013

Material

Distribution
Recently described from Sweden (Gagné & Jaschhof 2014). New to central Europe including SK.

Porricondyla neglecta Mamaev, 1965

Material

Distribution
Known from several European countries (Gagné & Jaschhof 2014), including CZ (see Skuhrová 1994). New to SK.

Porricondyla nigripennis (Meigen, 1830)

Material

Distribution
A very common Holarctic species (Gagné & Jaschhof 2014). These are the first records from Moravia and Silesia (CZ).
Porricondyla tetranchistica Mamaev, 1988

Material

Distribution
A rarely collected species previously known only from Sweden and the Near East (Gagné & Jaschhof 2014). New to central Europe including SK.

Rostellatayla Jaschhof, 2013

Rostellatayla rostellata (Panelius, 1965)

Material
CZECH REPUBLIC: 1 ♂, Moravia and Silesia, Šilheřovice, Černý les II. NR, 4 Sep. 2015, SW, J. Ševčík and T. Sikora leg. (TSPC).

Distribution
Widely distributed in Europe (Gagné & Jaschhof 2014). New to CZ.

Serratyla Jaschhof, 2013

Serratyla pubescens (Walker, 1856)

Material

Distribution
Widely distributed in Europe (Gagné & Jaschhof 2014). New to CZ and SK.

Schistoneurus Mamaev, 1964

Schistoneurus irregularis Mamaev, 1964

Material

Distribution
Previously recorded from northern and eastern Europe (Gagné & Jaschhof 2014). New to central Europe including CZ and SK.

Spungisomyia Mamaev & Zaitzev, 1996

Spungisomyia fenestrata Jaschhof, 2013

Material

Distribution
Recently described from Sweden (Gagné & Jaschhof 2014). New to central Europe including CZ.

Spungisomyia media (Spungis, 1981)

Material

Distribution
Palaearctic in distribution (Gagné & Jaschhof 2014). New to SK.

Tetraneuromyia Mamaev, 1964

Tetraneuromyia hirticornis (Zetterstedt, 1850)

Material

Distribution
The most common and widely distributed species of *Tetraneuromyia* Mamaev, 1964 in Europe (Gagné & Jaschhof 2014). New to CZ and SK.

Tetraneuromyia lamellata Spungis, 1987

Material

Distribution
Previously known from Sweden, Latvia and European Russia (Gagné & Jaschhof 2014). New to central Europe including CZ.
Material

Distribution

Previously known only from Sweden and Latvia (Gagné & Jaschhof 2014). New to central Europe including CZ.

Discussion

Only 44 species of the fungivorous subfamilies have previously been recorded from all of the Czech Republic and Slovakia (Skuhravá & Košel 1995; Jaschhof 1998, 2015; Mantič et al. 2015; Skuhravá 1997, 2004, 2009; Ševčík 2010; Tóth & Lukáš 2004). In this paper, a total of 49 species are for the first time reported from the Czech Republic and 33 species from Slovakia. Thirty-nine species are new to the fauna of central Europe. Many of the newly recorded species have only recently been discovered and described from Sweden (see Jaschhof & Jaschhof 2013). The level of current knowledge of the mycophagous gall midge fauna in the Czech Republic and Slovakia is difficult to estimate, but must certainly be considered as preliminary. Based on species inventories in other well-wooded European countries, such as Germany (Jaschhof 2009) and Sweden (Jaschhof & Jaschhof 2009, 2013, 2015), we estimate the number of species of the fungivorous subfamilies in the Czech and Slovak Republics at more than 400, meaning we are at the very beginning with our efforts.

Most of the species found during our survey belong, as far as is known, to a group of boreo-montane and/or silviculous species, although several localities sampled represent rather thermophilous forests or forest steppes, especially in the Podyji and Muránska planina national parks. Recent results regarding other families of Bibionomorpha (e.g., Mantič et al. 2015) indicate a distribution pattern in which principally Mediterranean species extend to central Europe, but no such species of Cecidomyiidae were found during this study.

Our inventory of fungivorous Cecidomyiidae in the Czech and Slovak Republics will be continued, with a focus on those localities that in the past proved to be particularly rich in species. Collecting techniques other than Malaise trapping will be tested, including those providing biological information (cf. Ševčík & Roháček 2008).

Our results add to the pool of data that are necessary for meaningful biogeographical and ecological analyses of these gall midges (cf. Jaschhof & Jaschhof 2009). Considering that almost all the insect samples interpreted here have been collected in nature reserves and national parks, our data are useful for highlighting the extraordinary natural richness of those areas, and also in supporting decision-making processes in nature conservation in the future.

Acknowledgements

M.J.’s research is funded by Svenska ArtDatabanken (Swedish Species Information Centre) within the framework of Svenska Artprojektet (Swedish Taxonomy Initiative) (dha 2014-150 4.3). Collecting trips to Slovakia were partly supported by the Ministry of Culture of the Czech Republic by institutional financing of long-term conceptual development of the research institution (the Silesian Museum, MK000100595), internal grants of the Silesian Museum nos IGS201303/2013 and IGS201607/2016. Laboratory facilities and equipment used by the first author were provided by the University of Ostrava (through the institutional support from the Ministry of Education, Youth and Sports of the
Czech Republic). Miroslav Barták, Jan Ježek and Jindřich Roháček kindly provided their material. We thank Michal Mantič for assembling the photos of localities, Peter J. Chandler for checking the English language, Marcela Skuhravá for reading and commenting on the manuscript prior to submission to the journal, and two anonymous reviewers for their valuable suggestions.

References

Manuscript received: 15 March 2016
Manuscript accepted: 7 July 2016
Published on: 22 March 2017
Topic editor: Gavin Broad
Desk editor: Kristiaan Hoedemakers

Printed versions of all papers are also deposited in the libraries of the institutes that are members of the EJT consortium: Muséum national d’Histoire naturelle, Paris, France; Botanic Garden Meise, Belgium; Royal Museum for Central Africa, Tervuren, Belgium; Natural History Museum, London, United Kingdom; Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Natural History Museum of Denmark, Copenhagen, Denmark; Naturalis Biodiversity Center, Leiden, the Netherlands.