Niphargus dancaui sp. nov. (Amphipoda, Niphargidae) – a new species thriving in sulfidic groundwaters in southeastern Romania

Traian Brad, Cene Fišer, Jean-François Flot, Serban M. Sarbu

Abstract


Niphargus dancaui sp. nov., previously referred to as Niphargus cf. stygius, was sampled from various groundwater sites in and near the town of Mangalia (SE Romania) and described with Movile Cave (a sulfidic, chemoautotrophically based ecosystem) as type locality. A short comparison with Niphargus stygius specimens from Slovenia was made, together with a morphological analysis of interpopulational variability. Males of N. dancaui sp. nov. were relatively large (17 mm), with long antennae, pereiopods and uropod III. Females were slightly smaller, with shorter antennae, pereiopods and uropod III. Interpopulational variability was noticed in the chaetotaxy of the telson lobes and uropod III. N. dancaui sp. nov. is morphologically very close to N. lessiniensis and N. tridentinus, two species present in northern Italy, but distinct genetically from them based on 28S rRNA sequences. Instead, the closest relative of N. dancaui sp. nov. sequenced so far for this marker is N. montanarius, which inhabits a sulfidic cave system in central Italy. The work presented here contributes to our knowledge of groundwater crustacean biodiversity in general and of the systematics of the genus Niphargus in particular.

Keywords


28S phylogeny; hypogenic cave; interpopulational diversity; Movile Cave

Full Text:

PDF PDF/A


DOI: https://doi.org/10.5852/ejt.2015.164

References


Altermatt F., Alther R., Fišer C., Jokela J., Konec M., Küry D., Mächler E., Stucki P. & Westram A. 2014. Diversity and distribution of freshwater amphipods in Switzerland (Crustacea: Amphipoda). PLOS ONE 9: e110328. http://dx.doi/org/10.1371/journal.pone.0110328

Bah T. 2011. Inkscape: Guide to a Vector Drawing Program (4th ed.). Prentice Hall, Boston, MA.

Benson D.A., Clark K., Karsch-Mizrachi I., Lipman, D.J., Ostell J. & Sayers E.W. 2015. GenBank. Nucleic Acids Research. 43: D30–D35. http://dx.doi.org/10.1093/nar/gku1216

Dancău D. 1964. Noi contribuţii la studiul amfipodelor subterane Niphargus dobrogicus n. sp. Lucrările Institutului de Speologie “Emil Racoviţă” 3: 397–403.

Dancău D. 1970. Sur un nouvel amphipode souterrain de Roumanie, Pontoniphargus racovitzai n.g., n.sp. In: Orghidan T. & Dumitresco M. (eds) Livre du Centenaire. Emile G. Racovitza 1868–1968: 275–285. Académie de la République Socialiste de Roumanie, Bucarest.

Esmaeili-Rineh S., Sari A., Delić T., Moškrič A. & Fišer C. 2015. Molecular phylogeny of the subterranean genus Niphargus (Crustacea: Amphipoda) in the Middle East: a comparison with European niphargids. Zoological Journal of the Linnean Society 175 (4): 812–826. http://dx.doi.org/10.1111/zoj.12296

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 (4): 783–791.

Fišer C. 2012. Niphargus: a model system for evolution and ecology. In: Culver D.C. & White W.B. (eds) Encyclopedia of Caves: 555–564. Academic Press, Amsterdam.

Fišer C., Sket B. & Trontelj P. 2008. A phylogenetic perspective on 160 years of troubled taxonomy of Niphargus (Crustacea: Amphipoda). Zoologica Scripta 37: 665–680. http://dx.doi/org/10.1111/j.1463-6409.2008.00347.x

Fišer C., Trontelj P., Luštrik R. & Sket B. 2009. Toward a unified taxonomy of Niphargus (Crustacea: Amphipoda): a review of morphological variability. Zootaxa 2061: 1–22.

Fišer C., Konec M., Kobe Z., Osanič M., Gruden P. & Potočnik H. 2010. Conservation problems with hypothelminorheic Niphargus spe­cies (Amphipoda: Niphargidae). Aquatic Conservation: Marine and Freshwater Ecosystems 20 (5): 602–604. http://dx.doi.org/10.1002/aqc.1119

Fišer C., Zagmajster M. & Zakšek V. 2013. Coevolution of life history traits and morphology in female subterranean amphipods. Oikos 122 (5): 770–778. http://dx.doi.org/10.1111/j.1600-0706.2012.20644.x

Fišer C., Luštrik R., Sarbu S., Flot J.-F., Trontelj P. 2015. Morphological evolution of coexisting amphipod species pairs from sulfidic caves suggests competitive interactions and character displacement, but no environmental filtering and convergence. PLOS ONE 10: 1–13. http://dx.doi.org/10.1371/journal.pone.0123535

Flot J.-F. 2010. Vers une taxonomie moléculaire des amphipodes du genre Niphargus : exemples d’utilisation de séquences d’ADN pour l’identification des espèces. Bulletin de la Société des Sciences Naturelles de l’Ouest de la France 32: 62–68.

Flot J.-F., Wörheide G. & Dattagupta S. 2010. Unsuspected diversity of Niphargus amphipods in the chemoautotrophic cave ecosystem of Frasassi, central Italy. BMC Evolutionary Biology 10: 171. http://dx.doi.org/10.1186/1471-2148-10-171

Flot J.-F., Bauermeister J., Brad T., Hillebrand-Voiculescu A., Sarbu S.M. & Dattagupta S. 2014. Niphargus-Thiothrix associations may be widespread in sulphidic groundwater ecosystems: evidence from southeastern Romania. Molecular Ecology 23 (6): 1405–1417. http://dx.doi.org/10.1111/mec.12461

Forti P., Galdenzi S. & Sarbu S.M. 2002. The hypogenic caves: a powerful tool for the study of seeps and their environmental effects. Continental Shelf Research 22: 2373–2386.

Gibert J. 2001. Basic attributes of groundwater ecosystems. In: Griebler C., Danielopol D.L. Gibert J., Nachtnebel H.P. & Notenboom J. (eds). Groundwater Ecology. A Tool for Management of Water Resources: 39–54. Office for Official Publications of the European Communities, Luxembourg.

Hartke T.R., Fišer C., Hohagen J., Kleber S., Hartmann R. & Koenemann S. 2011. Morphological and molecular analyses of closely related species in the stygobiontic genus Niphargus (Amphipoda). Journal of Crustacean Biology 31: 701–709. http://dx.doi/org/10.1651/10-3434.1

Hekmatara M., Zakšek V., Heidari Baladehi M. & Fišer, C. 2013. Two new species of Niphargus (Crus-tacea: Amphipoda) from Iran. Journal of Natural History 47 (21­–22): 1421–1449. http://dx.doi.org/10.1080/00222933.2012.743616

Hudec I. & Mock A. 2014. Niphargus plurispinosus sp. n. (Crustacea, Amphipoda), a stygophile and hypotelminorheic representative from Central Europe. Subterranean Biology 13: 65–87. http://dx.doi.org/10.3897/subtbiol.13.6531

Karaman S. 1952. Podrod Stygoniphargus u Sloveniji i Hrvatskoj. Prirodoslovna Istraživanja 25: 5–38.

Karaman G.S., Borowsky B. & Dattagupta S. 2010. Two new species of the genus Niphargus Schiödte, 1849 (Amphipoda, fam. Niphargidae) from the Frasassi cave system in Central Italy. Zootaxa 2439: 35–52.

Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. http://dx.doi.org/10.1093/molbev/mst010

Lanave C., Preparata G., Saccone C. & Serio G. 1984. A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20: 86–93. http://dx.doi.org/10.1007/BF02101990

Latella L., Di Russo C., De Pasquale L., Dell’Anna L., Nardi G. & Rampini M. 1999. Preliminary investigations on a new sulfurous cave in Central Italy. Mémoires de Biospéologie 26: 131–135.

Lefébure T., Douady C.J., Gouy M., Trontelj P., Briolay J. & Gibert J. 2006 Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology 15 (7): 1797–1806. http://dx.doi.org/10.1111/j.1365-294X.2006.02888.x

Lefébure T., Douady C.J., Malard F. & Gibert J. 2007 Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Molecular Phylogenetics and Evolution 42 (3): 676–686. http://dx.doi.org/10.1016/j.ympev.2006.08.020

McInerney C.E., Maurice L., Robertson A.L., Lee R.F.D.K., Arnscheidt J., Venditti C., Dooley J.S.G., Mathers T., Matthijs S., Eriksson K., Proudlove G.S. & Hänfling B. 2014. The ancient Britons: groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. Molecular Ecology 23 (5): 1153–1166. http://dx.doi.org/10.1111/mec.12664

Ntakis A., Anastasiadou C., Zakšek V. & Fišer C. 2015. Phylogeny and biogeography of three new species of Niphargus (Crustacea: Amphipoda) from Greece. Zoologischer Anzeiger 255: 32–46. http://dx.doi.org/10.1016/j.jcz.2015.02.002

Price M.N., Dehal P.S. & Arkin AP. 2010. FastTree 2 – Approximately maximum-likelihood trees for large alignments. PLoS ONE 5: e9490. http://dx.doi.org/10.1371/journal.pone.0009490

Rejic M. 1956. Dve novi vrsti nifargid iz Slovenije. Biološki Vestnik 5: 79–84.

Sarbu S.M. & Popa R. 1992. A unique chemoautotrophically based cave ecosystem. In: Camacho A.I. (ed.) The Natural History of Biospeleology: 637–666. Monograph of the National Museum of Natural Sciences 7, Madrid, Spain.

Sarbu S.M., Kane T.C. & Kinkle B.K. 1996. A chemoautotrophically based cave ecosystem. Science 272: 1953–1955. http://dx.doi.org/10.1126/science.272.5270.1953

Sarbu S.M., Galdenzi S., Menichetti M. & Gentile G. 2000. Geology and biology of the Frasassi caves in central Italy: an ecological multi-disciplinary study of a hypogenic underground karst system. In: Wilkens H., Culver D.C. & Humphreys W.F. (eds) Subterranean Ecosystems: 359–378. Elsevier Academic Press, Amsterdam.

Sket B. 1974. Niphargus stygius (Schiödte) (Amphipoda, Gammaridae) — die Neubeschreibung des Renerotypus, Variabilität, Verbreitung und Biologie der Art, I. Biološki Vestnik 22: 91–103.

Sket B. & Velkovrh F. 1981. Postojnsko-Planinski jamski sistem kot model za preučevanje onesnaženja podzemeljskih voda. Naše Jame 22: 27–44.

Stoch F. 1998. Revision of the Niphargus stygius-group in Venetia and Trentino (northeastern Italy), with description of three new species (Crustacea, Amphipoda, Niphargidae). Bollettino del Museo Civico di Storia Naturale di Verona 22: 229–274.

Švara V., Delić T., Raða T. & Fišer C. 2015. Molecular phylogeny of Niphargus boskovici (Crustacea: Amphipoda) reveals a new species from epikarst. Zootaxa 3994: 354–376. http://dx.doi.org/10.11646/zootaxa.3994.3.2

Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. http://dx.doi.org/10.1093/molbev/mst197

Tavaré S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17: 57–86.

Trontelj P., Douady C.J., Fišer C., Gibert J., Gorički Š., Lefébure T., Sket B. & Zakšek V. 2009. A molecular test for cryptic diversity in ground water: how large are the ranges of macrostygobionts? Freshwater Biology 54 (4): 727–744. http://dx.doi.org/10.1111/j.1365-2427.2007.01877.x

Trontelj P., Blejec A. & Fišer C. 2012 Ecomorphological convergence of cave communities. Evolution 66 (12): 3852–3865. http://dx.doi.org/10.1111/j.1558-5646.2012.01734.x

Väinölä R., Witt J., Grabowski M., Bradbury J., Jazdzewski K. & Sket B. 2008. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595: 241–255. http://dx.doi.org/10.1007/s10750-007-9020-6

Villesen P. 2007. FaBox: an online toolbox for FASTA sequences. Molecular Ecology Notes 7: 965–968. http://dx.doi.org/10.1111/j.1471-8286.2007.01821.x


Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/3.0/