Molecular phylogeny of Blaberidae (Dictyoptera, Blattodea) with implications for taxonomy and evolutionary studies

Frédéric Legendre, Philippe Grandcolas, France Thouzé

Abstract


In the present “tree-thinking” period, relying on accurate phylogenetic hypotheses is of paramount importance for biologists interested in an evolutionary perspective. In the Blaberidae cockroaches, a well-defined monophyletic family comprising several model species, no such phylogenetic tree is available despite several earlier contributions. Here, using six molecular markers (12S, 16S, 18S, 28S, COI and COII), we investigate the relationships of Blaberidae and compare our results with the traditional morphology-based classification. This resulted in a broad spectrum of situations, from congruent and well-supported hypotheses (e.g., the monophyly of Blaberidae, Oxyhaloinae and (Geoscapheiinae + Panesthiinae)) to incongruent and weakly supported results (e.g., polyphyly of Perisphaerinae). We emphasize that interesting and contrasted situations lie between the two extremities of this spectrum, especially concerning the genera Thanatophyllum Grandcolas, 1991, Phoetalia Stål, 1874, Laxta Walker, 1868 and Pronauphoeta Shelford, 1909. We also discuss the phylogenetic position of two incertae sedis genera (Eustegasta Gerstaecker, 1883 and Gynopeltis Gerstaecker, 1869). We conclude that in-depth signal analyses should be performed to better understand molecular evolution and its consequence on tree reconstruction for this group. As for phylogenetic relationships per se, new markers should be searched for, especially to decipher deeper relationships in Blaberidae.

Keywords


biogeography; incongruence; genitalia; morphology; phylogenetic signal

Full Text:

PDF PDF/A


DOI: https://doi.org/10.5852/ejt.2017.291

References


Baum D. & Smith S.D. 2013. Tree Thinking. An Introduction to Phylogenetic Biology. Roberts & Company, Greenwood Village, CO.

Baum D.A., Smith S.D. & Donovan S.S.S. 2005. The tree-thinking challenge. Science 310: 979–980. https://doi.org/10.1126/science.1117727

Beccaloni G.W. 2014. Cockroach Species File Online. Version 5.0/5.0. Available from http://Cockroach.SpeciesFile.org [accessed 4 Jan. 2016].

Bergsten J. 2005. A review of long-branch attraction. Cladistics 21: 163–193. https://doi.org/10.1111/j.1096-0031.2005.00059.x

Chiapella J., Kuhl J., Demaio P. & Amarilla L. 2014. Fishing for significance in phylogenies: too many alternatives for the same outcome, or an appeal to journal editors. Ideas in Ecology and Evolution 7: 3–7. https://doi.org/10.4033/iee.2014.7.2.n

Costa J.T. 2006. The Other Insect Societies. Belknap Press of Harvard University Press, Cambridge, MA.

Darriba D., Taboada G.L., Doallo R., Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772–772. https://doi.org/10.1038/nmeth.2109

Djernæs M., Klass K.-D., Picker M.D. & Damgaard J. 2012. Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out-group sampling. Systematic Entomology 37: 65–83. https://doi.org/10.1111/j.1365-3113.2011.00598.x

Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340

Gouy M., Guindon S. & Gascuel O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27: 221–224. https://doi.org/10.1093/molbev/msp259

Grandcolas P. 1991. Descriptions de nouvelles Zetoborinae guyanaises avec quelques remarques sur la sous-famille. Bulletin de la Société Entomologique de France 95: 241–246.

Grandcolas P. 1993. Monophylie et structure phylogénétique des [Blaberinae + Zetoborinae + Gyninae + Diplopterinae] (Dictyoptera: Blaberidae). Annales de la Société Entomologique de France 29: 195–222.

Grandcolas P. 1994. Phylogenetic systematics of the subfamily Polyphaginae, with the assignment of Cryptocercus Scudder, 1862 to this taxon (Blattaria, Blaberoidea, Polyphagidae). Systematic Entomology 19: 145–158. https://doi.org/10.1111/j.1365-3113.1994.tb00584.x

Grandcolas P. 1996. The phylogeny of cockroach families: a cladistic appraisal of morpho-anatomical data. Canadian Journal of Zoology 74: 508–527. https://doi.org/10.1139/z96-059

Grandcolas P. 1997. The monophyly of the subfamily Perisphaeriinae (Dictyoptera: Blattaria: Blaberidae). Systematic Entomology 22: 123–130. https://doi.org/10.1046/j.1365-3113.1997.d01-28.x

Grandcolas P., Deleporte P. & Desutter-Grandcolas L. 1994. Why to use phylogeny in evolutionary ecology? Acta Oecologica 15: 661–673.

Gregory T.R. 2008. Understanding evolutionary trees. Evolution: Education and Outreach 1: 121–137. https://doi.org/10.1007/s12052-008-0035-x

Huson D.H. & Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254–267. https://doi.org/10.1093/molbev/msj030

Inward D., Beccaloni G. & Eggleton P. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters 3: 331–335. https://doi.org/10.1098/rsbl.2007.0102

Klass K.-D. & Meier R. 2006. A phylogenetic analysis of Dictyoptera (Insecta) based on morphological characters. Entomologische Abhandlungen 63: 3–50.

Kumar R. 1975. A review of the cockroaches of West Africa and the Congo Basin (Dictyoptera: Blattaria). Bulletin de l’Institut fondamental d’Afrique noire (Sciences naturelles) 37: 27–121.

Lanfear R., Calcott B., Ho S.Y.W. & Guindon S. 2012. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695–1701. https://doi.org/10.1093/molbev/mss020

Legendre F. 2007. Phylogénie et Évolution du Comportement social chez les Blattes et les Termites. PhD Thesis. Université Pierre et Marie Curie, Paris, France.

Legendre F., Whiting M.F., Bordereau C., Cancello E.M., Evans T.A. & Grandcolas P. 2008. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Molecular Phylogenetics and Evolution 48: 615–627. https://doi.org/10.1016/j.ympev.2008.04.017

Legendre F., D’Haese C., Deleporte P., Pellens R., Whiting M.F., Schliep K. & Grandcolas P. 2014. The evolution of social behaviour in blaberid cockroaches with diverse habitats and social systems: phylogenetic analysis of behavioural sequences. Biological Journal of the Linnean Society 111: 58–77. https://doi.org/10.1111/bij.12199

Legendre F., Nel A., Svenson G.J., Robillard T., Pellens R. & Grandcolas P. 2015. Phylogeny of Dictyoptera: Dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS One 10: e130127. https://doi.org/10.1371/journal.pone.0130127

Lemmon A.R., Brown J.M., Stanger-Hall K. & Lemmon E.M. 2009. The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Systematic Biology 58: 130–145. https://doi.org/10.1093/sysbio/syp017

Li X. 2007. Juvenile hormone and methyl farnesoate production in cockroach embryos in relation to dorsal closure and the reproductive modes of different species of cockroaches. Archives of Insect Biochemistry and Physiology 66: 159–168. https://doi.org/10.1002/arch.20207

Losos J.B., Arnold S.J., Bejerano G., Brodie E.D., Hibbett D., Hoekstra H.E., Mindell D.P., Monteiro A., Moritz C., Orr H.A., Petrov D.A., Renner S.S., Ricklefs R.E., Soltis P.S. & Turner T.L. 2013. Evolutionary biology for the 21st century. PLoS Biology 11: e1001466. https://doi.org/10.1371/journal.pbio.1001466

Maekawa K., Lo N., Rose H. & Matsumoto T. 2003. The evolution of soil-burrowing cockroaches (Blattaria: Blaberidae) from wood-burrowing ancestors following an invasion of the latter from Asia into Australia. Proceedings of the Royal Society of London B 270: 1301–1307. https://doi.org/10.1098/rspb.2003.2359

McKittrick F.A. 1964. Evolutionary study of cockroaches. Cornell University Agricultural Experiment Station Memoir 389: 1–197.

Metzker M.L. 2010. Sequencing technologies – the next generation. Nature Reviews, Genetics 11: 31–46. https://doi.org/10.1038/nrg2626

Nelson G.M., Quinn R.D., Bachmann R.J., Flannigan W.C., Ritzmann R.E. & Watson J.T. 1997. Design and simulation of a cockroach-like hexapod robot. Proceedings of International Conference on Robotics and Automation 2: 1106–1111. https://doi.org/10.1109/robot.1997.614284

O’Hara R.J. 1997. Population thinking and tree thinking in systematics. Zoologica Scripta 26: 323–329. https://doi.org/10.1111/j.1463-6409.1997.tb00422.x

Omland K.E., Cook L.G. & Crisp M.D. 2008. Tree thinking for all biology: the problem with reading phylogenies as ladders of progress. Bioessays 30: 854–867. https://doi.org/10.1002/bies.20794

Parr C.S., Guralnick R., Cellinese N. & Page R.D.M. 2012. Evolutionary informatics: unifying knowledge about the diversity of life. Trends in Ecology and Evolution 27: 94–103. https://doi.org/10.1016/j.tree.2011.11.001

Pellens R., D’Haese C.A., Bellés X., Piulachs M.D., Legendre F., Wheeler W.C. & Grandcolas P. 2007. The evolutionary transition from subsocial to eusocial behaviour in Dictyoptera: Phylogenetic evidence for modification of the “shift-in-dependent-care” hypothesis with a new subsocial cockroach. Molecular Phylogenetics and Evolution 43: 616–626. https://doi.org/10.1016/j.ympev.2006.12.017

Philippe H. & Roure B. 2011. Difficult phylogenetic questions: more data, maybe; better methods, certainly. BMC Biology 9: e91. https://doi.org/10.1186/1741-7007-9-91

Rambaut A., Suchard M.A., Xie D. & Drummond A.J. 2014. Tracer 1.6. Available from http://beast.bio.ed.ac.uk/Tracer [accessed 6 Sept. 2015].

Rehn J.A.G. 1932. African and Malagasy Blattidae (Orthoptera), part II. Proceedings of the Academy of Natural Sciences of Philadelphia 84: 405–511.

Ronquist F. & Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Roth L.M. 1970a. The male genitalia of Blattaria. III. Blaberidae: Zetoborinae. Psyche 77: 217–236. https://doi.org/10.1155/1970/14743

Roth L.M. 1970b. The male genitalia of Blattaria. IV. Blaberidae: Blaberinae. Psyche 77: 308–342. https://doi.org/10.1155/1970/72938

Roth L.M. 1970c. The male genitalia of Blattaria. V. Epilampra spp. (Blaberidae: Epilamprinae). Psyche 77: 436–486. https://doi.org/10.1155/1970/46805

Roth L.M. 1973. The male genitalia of Blattaria. XI. Perisphaeriinae. Psyche 80: 305–348. https://doi.org/10.1155/1973/48938

Roth L.M. 2003. Systematics and phylogeny of cockroaches (Dictyoptera: Blattaria). Oriental Insects 37: 1–186. https://doi.org/10.1080/00305316.2003.10417344

Roth L.M. & Willis E.R. 1954. The reproduction of cockroaches. Smithsonian Miscellaneous Collections 122: 1–49.

Roure B., Baurain D. & Philippe H. 2013. Impact of missing data on phylogenies inferred from empirical phylogenomic data sets. Molecular Biology and Evolution 30: 197–214. https://doi.org/10.1093/molbev/mss208

De Saussure H. 1864. Orthoptères de l’Amérique moyenne. In: De Saussure H. (ed.) Mémoires pour servir à l’Histoire naturelle du Mexique, des Antilles et des Étas-Unis, vol. 1: 1–279. Bamboz & Schuchardt, Geneva.

Shelford R. 1909. Descriptions of some new genera and species of Blattidae (Orth.). Deutsche Entomologische Zeitschrift 5: 611–624. Available from http://biodiversitylibrary.org/page/33103293 [accessed 20 Feb. 2017].

Sousa F.L., Thiergart T., Landan G., Nelson-Sathi S., Pereira I. a C., Allen J.F., Lane N. & Martin W.F. 2013. Early bioenergetic evolution. Philosophical Transactions of the Royal Society of London B 368: e20130088. https://doi.org/10.1098/rstb.2013.0088

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Thiergart T., Landan G. & Martin W.F. 2014. Concatenated alignments and the case of the disappearing tree. BMC Evolutionary Biology 14: 266–277. https://doi.org/10.1186/s12862-014-0266-0

Townsend J.P. 2007. Profiling phylogenetic informativeness. Systematic Biology 56: 222–231. https://doi.org/10.1080/10635150701311362

Vaidya G., Lohman D.J. & Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

Ware J.L., Litman J., Klass K.-D. & Spearman L.A. 2008. Relationships among the major lineages of Dictyoptera: the effect of outgroup selection on dictyopteran tree topology. Systematic Entomology 33: 429–450. https://doi.org/10.1111/j.1365-3113.2008.00424.x

Wheeler W.C. 1990. Nucleic acid sequence phylogeny and random outgroups. Cladistics 6: 363–367. https://doi.org/10.1111/j.1096-0031.1990.tb00550.x

Whitfield J.B. & Lockhart P.J. 2007. Deciphering ancient rapid radiations. Trends in Ecology and Evolution 22: 258–265. https://doi.org/10.1016/j.tree.2007.01.012


Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/3.0/

 

 

royal_museum_for_central_africablank_spaceroyal_belgian_institute_of_natural_sciencesnatural_history_museum_of_londonnatural_history_museum_of_denmark

 

 

    

 

Credits for header's photographs